solutions structure of integrable families of riccati equations and their applications to the perturbed nonlinear fractional schrodinger equation

Authors

ahmad neirameh

gonbad kavous university saeid shokooh

gonbad kavous university mostafa eslami

mazandaran university

abstract

some preliminaries about the integrable families of riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional schrodinger equation with the kerr law nonlinearity. finally by using of this method and solutions of riccati equations we obtain several analytical solutions for perturbed nonlinear fractional schrodinger equation. the proposed technique enables a straightforward derivation of parameters of solitary solutions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

full text

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative, we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of R...

full text

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

full text

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

full text

existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

in this paper, we consider a coupled system of nonlinear fractional differential equations (fdes), such that bothequations have a particular perturbed terms. using emph{leray-schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

full text

My Resources

Save resource for easier access later


Journal title:
computational methods for differential equations

جلد ۴، شماره ۴، صفحات ۲۶۱-۲۷۵

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023